Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

Материалы заданий олимпиады школьников «Наследники Левши» по физике за 2021/22 учебный год

Отборочный этап

7 класс

1. Мотоциклист из пункта **A** в пункт **B** ехал со скоростью V_1 =80 км/ч. На обратном пути он треть времени ехал со скоростью V_2 =60 км/ч, а оставшийся участок со скоростью V_3 =90км/ч. Найдите среднюю скорость этой поездки.

Ответ: 80 км/ч

2. Вдоль координатной оси ОХ движется тело. Уравнение движения имеет вид x=15 -5t, где все единицы выражены в системе СИ. Определите путь, пройденный телом за $t=10\ c$ от начала движения.

Ответ: 50 м

3. Ехавший по прямой дороге велосипедист увидел, что на колокольне стоящей у дороги впереди по курсу церкви, звонарь начал бить в колокола, но звук он услышал только через t=3c. До церкви он доехал через T=36c с начала наблюдения. Какой путь проехал велосипедист с начала наблюдения? Скорость звука -330 м/c.

Ответ: 1080 м

4. В бокал налили 200 мл лимонада и добавили несколько кубиков льда с ребром a=2 см. Масса получившегося напитка оказалась M=0,31 кг. Сколько кубиков льда добавили в напиток? Плотность льда $\rho_1=900\frac{\kappa r}{M^3}$, плотность лимонада равно плотности воды $\rho_2=1000\frac{\kappa r}{M^3}$.

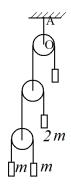
Ответ: 15

5. Друзья находились на середине плота длиной L = 200 м, сплавляемого по реке. Поговорив друг с другом, они пошли на противоположные концы плота. Время, за которое каждый из них дошёл до края плота, различалось в 4 раза. Мальчики удивились, т.к. знали, что при ходьбе по ровной дороге их скорости одинаковы. Они поняли, что надо учесть влияние течения реки. Определите скорость мальчиков, если известно, что скорость течения реки V=3 м/с.

Ответ: 5 м/с

1. Плотность первой жидкости на 5% больше плотности второй. В первой жидкости плавает сосуд, в котором насыпаны дробинки. Их общая масса $M = 2 \ \kappa 2$. На сколько надо уменьшить массу (убрав несколько дробинок) при переносе из первой жидкости во вторую, чтобы его глубина погружения не изменилась?

Ответ: 0,1 кг


2. Куб с ребром 5 *см* плавает наполовину погружённый в ртуть. Поверх ртути наливают воду так, что уровень воды совпадает с верхней гранью куба. На сколько *см* изменится глубина погружения кубика в этом случае?

Плотность ртути $\rho_1 = 13600 \frac{\text{кг}}{\text{s}^2}$, плотность воды $\rho_2 = 1000 \frac{\text{кг}}{\text{s}^2}$.

Ответ: 0,2 см

3. Беговая дорожка на школьном стадионе имеет замкнутую форму и длину $L = 500 \ m$. Точки старта и финиша совпадают. Два школьника начинают бег одновременно с линии старта, но бегут в противоположные стороны. Известно, что скорость первого $V_I = 5 \ m/c$. Через $t_I = 62,5 \ c$ они встретились и, не останавливаясь, продолжили движение. На сколько секунд будет различаться время пробега для второго и первого школьника.

Ответ: второй на 67 с дольше

4. На рисунке изображена система блоков с грузами. Все блоки считать невесомыми, нити нерастяжимыми, трение в оси блоков отсутствует. Масса правого груза неизвестна, но система находится в равновесии. Определить силу натяжения верхней нити АО. Масса $m = 0.5 \ \kappa z$.

Ответ: 40 Н

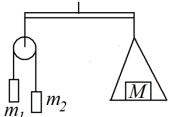
5. Если к пружине подвесить груз массы m_1 =0,2 κ 2, то её длина будет равна L_1 = 14 c_M . Если груз заменить на m_2 =0,3 κ 2, то длина пружины станет L_2 =16 c_M . Какой станет длина пружины, если к пружине подвесить оба груза? Ответ: 20 c_M

1. На тело, брошенное под углом $\alpha = 53^{\circ}$ к горизонту с начальной скоростью $V_0 = 10 \ m/c$, действует попутный горизонтальный ветер. Ветер сообщает телу ускорение a=1 M/c^2 . Найти дальность полёта тела.

Справка: $sin 53^\circ = 0.8$; $cos 53^\circ = 0.6$.

Ускорение свободного падения принять равным $g = 10 \text{м/c}^2$.

Ответ: 10,9 м


2. Тележка может катиться без трения по горизонтальной дороге. Двое рабочих прикладывая разные силы (постоянные), тянут тележку по очереди на одинаковых участках пути. Если тележку тянет первый рабочий, то в конце пути её скорость равна 0,8 м/с, а если второй, то скорость в конце пути 0,6 м/с. Какой будет эта скорость, если рабочие будут тянуть тележку вместе?

Ответ: 1 м/с

3. Шайба скользит по горизонтальной поверхности. Один участок пути L=24 м она проходит за $t_1 = 4$ c, а через t = 10 c от начала движения пройденный путь становится равным 48 м. Определите ускорение шайбы и скорость в конце второго участка.

Otbet: $a = 0.4 \text{ m/c}^2$; V = 2.8 m/c

4. Чашу на левом конце весов заменили на блок, а на правом конце осталась чаша, грузы

на которой можно менять. Через блок переброшена невесомая нерастяжимая нить К концам которой прикреплены грузы $m_1 = 0,4$ кг, $m_2 = 0,6$ кг. Когда блок заторможен, рычаг уравновешивается грузом М на правой чаше. На сколько надо изменить этот груз, чтобы система оставалась в равновесии после освобождения блока?

Точка подвеса находится в центре стержня.

Ответ: уменьшить на 40 г

5. По проводнику течёт постоянный ток. За время t = 10 мин в проводнике выделяется

Ответ: 120 Ом

1. Шайба скользит без начальной скорости по горке длиной L=45~m с углом наклона к горизонту $\alpha=53^{\circ}$. Коэффициент трения скольжения на первых 10 метрах горки $\mu_1=0$, 5, а на остальной части пути μ_2 . На весь спуск затрачено время 4,5 с. Определить коэффициент трения скольжения на второй части пути.

Справка: $sin53^\circ = 0.8$; $cos53^\circ = 0.6$.

Ускорение свободного падения принять равным $g = 10 \text{м/c}^2$.

Ответ: 0,8

2. Определить радиус орбиты спутника запущенного в плоскости экватора в направлении вращения Земли, если спутник находится постоянно над одной точкой земной поверхности?

Гравитационная постоянная $G = 6,67 \cdot 10^{-11} \frac{H \cdot M^2}{K\Gamma^2}$, радиус Земли R=6400 км, масса Земли

 $M = 6 \cdot 10^{24} \text{kr}.$

Ответ: 4,23 · 10⁷м

3. Две серебряные пули, летящие навстречу друг другу, сталкиваются абсолютно не упруго. Масса первой пули в 2 раза меньше, чем второй. Определите, как изменится температура пуль, если их скорость одинакова и равна V=900 м/c. Ответ дать в м/с и округлить до целых.

Температура пуль до взаимодействия **27°C**, удельная теплоёмкость свинца c = 250 Дж/(кг K).

Ответ: увеличится на 1400^{0}

4. Резистор сопротивлением R=400 Ом изготовили из проволоки, намотав её на непроводящий цилиндр длиной L=20 cm и диаметром D=8 cm так, что витки плотно прилегают друг к другу. Сколько получилось витков?

Удельное сопротивление проволоки равно $\rho = 0.4 \, (\text{Ом} \cdot \text{мм}^2)/\text{м}$

Ответ: 500

5. Дальность полёта тела, брошенного под углом к горизонту L=200м. Через 2 с проекции скорости на горизонтальную и вертикальную оси равны соответственно $Vx=20\,$ м/с и $Vy=30\,$ м/с. Точки старта и финиша находятся на одной горизонтали. Определите максимальную высоту подъёма тела. Ускорение свободного падения принять равным g=10м/с².

Ответ: 125 м

1. Пиропатрон от новогоднего фейерверка падает в сугроб. Какое количество снега растаяло, если известно, что скорость пиропатрона 1 км/с, масса 10 г и при попадании в сугроб кинетическая энергия патрона уменьшается на 44 %. Изменение энергии расходуется на таяние (плавление) снега. Ответ выразить в граммах и округлить до целого числа.

Ответ: 10 г

2. Маленький стальной шарик падает с высоты 17 см на наклонную стальную пластинку, упруго ударяется о нее и отскакивает снова. Расстояние между точками соударений 5,4 см. Как изменилась скорость шарика после второго соударения, если угол наклона пластинки 17°. Ответ округлить до сотых.

Ответ: 0,25 (уменьшилась в 4 раза)

3. Мальчик направлял солнечных зайчиков с помощью маленького плоского зеркала. Он поворачивал зеркало вокруг оси проходящей через точку падения луча и перпендикулярной к плоскости, в которой лежат падающий и отраженный лучи. На какой угол он должен повернуть зеркало, чтобы отраженный от него луч повернулся на угол 15°? Как изменился угол между падающим и отраженным лучами? Ответ дать в градусах и округлить до одного знака после запятой.

Ответ: 7,5°, на 15°

4. Готовая продукция перед упаковкой в коробки падает с верхнего горизонтального транспортера на нижний, тоже горизонтальный. Падает вертикально вниз. Скорости движения транспортеров одинаковые 2 м/с. Продукция имеет форму параллелепипеда и падает на нижний транспортер с начальной скоростью 3 м/с. При каком коэффициенте трения продукция не будет смещаться по транспортеру? Считать удар мгновенным. Ответ округлить до сотых.

Ответ: больше или равно 0,67

5. При переносе заряда из бесконечности в точку находящуюся на расстоянии 0,01 м от поверхности заряженного шара поле совершает работу 113 мкДж. Найти величину переносимого заряда, если известно, что поверхность шара заряжена до 12,56 нКл, радиус шара 1 см. Ответ дать в нанокулонах и округлить до целого значения.

Ответ: 20 нКл

Заключительный этап

7 класс

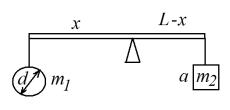
1. Моторная лодка проходит расстояние от пункта **A** до пункта **B** за $t_I = 1$ u, а плот это же расстояние проплывает за t_2 =4 ч. Лодка вышла из пункта A в момент когда плот проплывал мимо него. Дойдя до пункта Б лодка разворачивается. Через какое время после этого лодка встретится с плывущим плотом?

Решение

Скорость плота равна скорости течения реки $V_2 = V_p$. От пункта **A** до пункта **Б** путь равен $S = (V_p + V_n) t_1$, где V_n - скорость лодки в стоячей воде. Для плота этот путь $S = V_p t_2$. Следовательно, $V_p + V_n = 4V_p$, а скорость лодки $V_n = 3V_p$. При движении в обратную сторону скорость лодки относительно берега $V_3 = (-V_p + V_{\scriptscriptstyle R}) = 2V_p$.

Когда лодка дойдёт до пункта Б, плот пройдёт расстояние S/4 и расстояние между плотом и лодкой $3S/4 = t (V_p + V_3) = t 3V_p = (3/4)V_p t_2$. Встреча произойдёт через $t = t_2/4 = 1$ час.

Ответ: 1 час


2. К левому концу невесомого стержня длиной L=3м на тонкой невесомой нити подвешен шар, а к правому концу куб из того же материала. Диаметр шара d равен стороне куба a. На каком расстоянии от левого конца стержня надо поместить опору, чтобы система находилась в равновесии?

C n p a в к a: Объём шара $V = \frac{4}{3} \pi R^3$, где $\pi = 3,14$, R - p a д и у с шара.

Ответ: 1,97 м

Решение

В состоянии равновесия моменты сил m_1g $x = m_2$ g(L-x). (1)

L-x Радиус шара R=a/2. Масса шара $m_1=V_1\rho=\frac{4}{3}\pi\left(\frac{a}{2}\right)^3\rho$, масса куба $m_2=V_2\rho=a^3\rho$. Подставим эти массы в (1) $\frac{4}{3}\pi\left(\frac{a}{2}\right)^3\rho x=a^3\rho(L$ -x), отсюда $\frac{\pi}{6}x=L-x$.

Получаем x=1,97м.

3. Два металлических стержня имеют одинаковую массу. Диаметр первого медного стержня в 2 раза больше, чем второго, изготовленного из цинка. Длина какого стержня больше и во сколько раз?

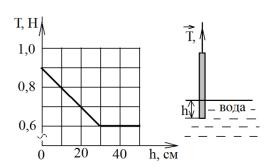
Плотность меди $\rho_1 = 8900 \frac{\text{кг}}{\text{м}^3}$, плотность цинка $\rho_2 = 7100 \frac{\text{кг}}{\text{м}^3}$

Решение

Масса медного стержня $m_1 = V_1 \rho_1 = L_1 \ 4S \ \rho_1$, масса стержня из цинка $m_2 = V_2 \rho_2 = L_2 \ S \ \rho_2$. Так как массы равны, получаем $\frac{L_2}{L_1} = \frac{4 \rho_1}{\rho_2} = \frac{4 \cdot 8900}{7100} = 5$.

Ответ: второго, в 5 раз длиннее

4. Пункты **A** и **B** находятся на расстоянии S=50 км друг от друга. Из пункта **B** со скоростью $V_1=60$ км/ч отходит автобус. Через 10 минут из пункта **A** в том же направлении выезжает мотоциклист со скоростью $V_2=120$ км/ч. На каком расстоянии от пункта **B** мотоциклист догонит автобус?


Решение

Пусть x – расстояние от пункта A, на котором произойдёт встреча. Тогда $x = V_1 t_1$. (1) Мотоциклист до встречи пройдёт расстояние $S+x=V_2t_2=V_2(t_1-\Delta t)$. (2)

Подставляем (1) в (2) и получаем $S+V_1 t_1=V_2(t_1-\Delta t)$ и находим время движения автобуса до

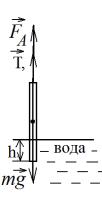
встречи
$$t_1 = \frac{s + v_2 \Delta t}{v_2 - v_1} = \frac{50 + 120 \cdot \frac{1}{6}}{120 - 60} = \frac{7}{6}$$
 часа. Следовательно, $x = V_1 t_1 = 60 \cdot \frac{7}{6} = 70$ км.

Ответ: 70 км

5. Стержень длиной L опускают в воду. Зависимость силы натяжения троса от глубины погружения дана на графике. Определите плотность стержня, если его площадь поперечного сечения $S=10^{-4} M^2$. Плотность воды $\rho=1000 \, {\rm Kr}/{\rm M}^3$.

Решение

На стержень действуют сила тяжести, сила Архимеда и сила натяжения троса (см. рис.),


причём $F_A+T=mg$ (1). Сила натяжения $T=mg-F_A$. Масса стержня $m=\rho_{cm}$ SL, $F_A=\rho gV=\rho gSh$, где h-глубина погруженной в жидкость части стержня.

При глубине погружения $30\ cm$ сила натяжения перестаёт меняться, т.е. стержень целиком погружён в воду и его длина L=0,3m.

При h=0 сила натяжения равна силе тяжести $T=\rho_{cm}$ SLg, следовательно

плотность стержня
$$\rho_{\rm cr} = \frac{T}{SLg} = \frac{0.9}{10^{-4}0.3\cdot 10} = 3000 \ {\rm kr/m}^3$$

Ответ: $3000 \, \text{кг/м}^3$

1. Мощность струи воды текущей из шланга диаметром $D=2\ cM$ равна $P=4,2\ Bm$. Определить скорость вытекающей из шланга воды. Плотность воды $\rho = 1000 \, ^{\rm KF}/_{\rm M}^3$.

Решение

Кинетическая энергия вытекающей струи $E = \frac{mU^2}{2}$, где U – скорость вытекающей струи.

За время t масса вытекающей воды $m=\rho V=\rho Sx=\rho \ \pi \ R^2 \ U \ t.$ Мощность $P=\frac{E}{t}=\frac{\rho \ \pi \ R^2 \ U \ t \ U^2}{2t}=\frac{\rho \ \pi \ R^2 \ U^3}{2}.$

Выражаем скорость $U = \sqrt[8]{\frac{2P}{\rho \pi R^2}} = \sqrt[8]{\frac{2 \cdot 4.2}{1000 \cdot 3.14 \cdot 10^{-4}}} = 3 \text{ м/c}$

Ответ: 3 м/с

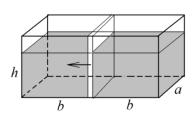
2. В калориметре находится смесь воды и льда при $t_I = 0$ ^{0}C . Массы льда и воды одинаковы и равны $m_1 = m_2 = 1 \kappa z$. В эту смесь опускают стальную деталь массой $m_3 = 0.5$ кг при температуре $t_2=200$ °C. Сколько воды останется в калориметре после установления теплового равновесия? Теплоёмкостью калориметра пренебречь.

Справочные материалы: удельная теплоёмкость воды $c_1 = 4200 \frac{д_{\text{ж}}}{\kappa r \cdot \kappa}$, удельная теплоёмкость льда $\mathbf{c}_2 = 2100 \frac{\mathtt{д} \texttt{ж}}{\mathtt{кr} \cdot \mathtt{K}}$, удельная теплоёмкость стали $\mathbf{c}_3 = 460 \frac{\mathtt{д} \texttt{ж}}{\mathtt{кr} \cdot \mathtt{K}}$, удельная теплота плавления льда $\lambda = 3.3 \cdot 10^5 \, \text{Дж/кг}$, удельная теплота парообразования $L=2.3\cdot 10^6 \frac{\text{Ax}}{\text{Col}}.$

Решение

Количество теплоты, необходимое для плавления льда

$$Q_1 = m_2 \lambda = 1 \cdot 3,3 \cdot 10^5 = 330 \cdot 10^3$$
Дж = 330 кДж


Количество теплоты, которое выделит деталь при остывании до 0°C

$$Q_2 = m_3 c_3 (t_2 - t_1) = 0.5 \cdot 460 (0 - 200) = -46 \cdot 10^3 Дж$$

Следовательно, этого тепла не хватит для плавления всего льда, т.е. конечная температура 0° С и растает только часть льда $\Delta m = \frac{|Q_2|}{\lambda} = \frac{46 \cdot 10^8}{3,3 \cdot 10^5} = 0,14$ кг.

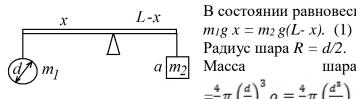
Тогда масса воды $m_{\scriptscriptstyle \rm B}=m_1+\Delta m=1.14$ кг

Ответ: 1,14 кг

3. В ёмкость с вертикальными стенками и прямоугольным основанием налита вода до высоты $h = 0.8 \, \text{м}$. Длина ёмкости 2b=2M, ширина a=0,6 M. В центр этой ёмкости помещают плотно прилегающую ко дну и боковым стенкам перегородку, а затем смещают её влево на расстояние равное а. Определить силу давления на перегородку, которое оказывает вода, находящаяся слева от неё. Плотность воды $\rho = 1000 \, ^{\rm KF}/_{\rm M}^3$.

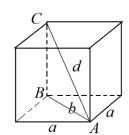
Решение

При перемещении перегородки объём воды в левой части не изменяется, следовательно $h \ b \ a = h_I \ a \ (b - a)$ и высота воды станет $h_1 = \frac{hb}{b - a} = \frac{0.8 \cdot 1}{1 - 0.6} = 2$ м.


Давление на боковую стенку станет $P = \frac{1}{2} \rho g h_1$. Сила давления $F = PS = \frac{\rho g h_1 \cdot h_1 a}{2} = \frac{\rho g a h_1^2}{2}$ $=\frac{10^8 \cdot 10 \cdot 4 \cdot 0,6}{2} = 12 \cdot 10^3 H = 12 \text{kH}.$

Ответ: 12 кН

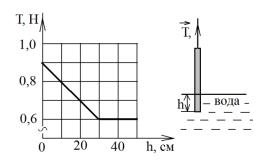
4. К концу **A** невесомого стержня длиной L=3M подвешен на тонкой невесомой нити шар, а к другому концу ${f B}$ куб из того же материала. Диаметр шара d равен диагонали куба. На каком расстоянии от конца А надо поместить опору, чтобы система находилась в равновесии?


Cправка: Объём шара $V=rac{4}{3}\pi R^3$, где $\pi=3,14$, R – радиус шара.

Решение

В состоянии равновесия моменты сил

Масса шара
$$m_I = V_I \rho$$
 $= \frac{4}{3}\pi \left(\frac{d}{2}\right)^3 \rho = \frac{4}{3}\pi \left(\frac{d^3}{8}\right) \rho = \frac{\pi d^3}{3 \cdot 2} \rho$. (2) о теореме Пифагора $b = a\sqrt{2}$, где $a - b$


Диагональ стороны куба по теореме Пифагора $b = a\sqrt{2}$, где о сторона куба.

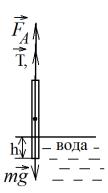
Из треугольника ABC находим диагональ куба $d^2=a^2+2a^2=3a^2$. Сторона куба $a=\frac{d}{\sqrt{3}}$

Масса куба $m_2 = V_2 \rho = a^3 \rho = \frac{d^3}{3\sqrt{3}} \rho$. (3). Так как массы одинаковы, приравниваем (2) и (3) $\frac{\pi d^3}{3 \cdot 2} \ \rho g x = \frac{d^3}{3\sqrt{3}} \ \rho g (L-x)$. Упрощая это выражение, получаем $\frac{\pi}{2} \ x = \frac{1}{\sqrt{3}} \ (L-x)$.

Получаем
$$x = \frac{L}{\left(\frac{\pi\sqrt{5}}{2}+1\right)} = 0,806 \text{ м} \approx 0,8 \text{ м}$$

Ответ: 0,8 м

5. Стержень длиной L опускают в воду. Зависимость силы натяжения троса от глубины погружения дана на графике. Определите площадь поперечного сечения стержня. Плотность воды $\rho_1 = 1000 \ \kappa z/m^3$, $\rho_2 = 3000 \ \kappa z/M^3$. Ускорение плотность стержня свободного падения $g = 10 \text{м/c}^2$.


Решение

стержень действуют тяжести, сила Архимеда и сила

натяжения троса (см. рис.), причём $F_A+T=mg$ (1). Масса стержня m= $\rho_2 \text{ SL}, F_A = \rho_1 gV = \rho_1 gSh, где h - глубина погруженной в жидкость$ части стержня.

При глубине погружения 30 см сила натяжения перестаёт меняться, т.е. стержень целиком погружён в воду и его длина L = 0,3м.

При h=0 сила натяжения равна силе тяжести $T=mg=\rho_2SL\boldsymbol{g}$, следовательно, площадь $S = \frac{\tau}{\rho_2 Lg} = \frac{0.9}{3000 \cdot 0.3 \cdot 10} = 1 \cdot 10^{-4} \text{ m}^2.$ сечения стержня

Ответ: $10^{-4} \,\mathrm{M}^2$

9 класс

1. Пули из игрушечного пистолета вылетают со скоростью V=20м/с. Петя делает два выстрела вертикально вверх с интервалом $\tau = 0.8$ с. На какой высоте от точки выстрела пули столкнутся? На сколько метров различаются пройденные первой и второй пулей пути к моменту их столкновения? Ускорение свободного падения $g = 10 \text{ м/c}^2$.

В момент столкновения координаты пуль совпадут, т.е. $y = Vt - \frac{gt^2}{2} = V(t-\tau) - \frac{g(t-\tau)^2}{2}$

Отсюда получаем время полёта первой пули $t = \frac{\tau^{\frac{9}{2}+V}}{c} = 2.4c$.

Тогда высота $h = y = Vt - \frac{gt^2}{2} = 20 \cdot 2,4 - \frac{10 \cdot 5,76}{2} = 19,2$ м.

Время подъёма пули до верхней точки траектории t_1 = V/g = 2c. Максимальная высота подъёма первой пули $H = 20 \cdot 2 - \frac{10 \cdot 4}{2} = 20$ м.

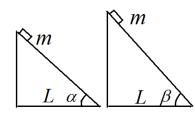
К моменту встречи первая пуля пролетела путь $S_1=20+0,8=20,8$ м, а вторая $S_2=19,2$ м, разница составляет $\Delta S = 20.8 - 19.2 = 1.6$ м

Ответ: 19,2 м; 1,6 м

2. В одном теплоизолированном сосуде находится $V_I = 6 \pi$ воды при температуре $t_I = 80^{\circ} C$, во втором $V_2=1$ л воды при температуре $t_2=20^{0}$ С. Из первого сосуда во второй переливают 1 литр воды и перемешивают содержимое. Затем из второго сосуда переливают 1 литр воды в первый сосуд. Определите температуру, установившуюся в результате в первом

Плотность воды $\rho = 1000 \frac{\text{кг}}{\text{м}^3}$, удельная теплоёмкость воды $c_1 = 4200 \frac{\text{Дж}}{\text{кг.К}}$.

Решение

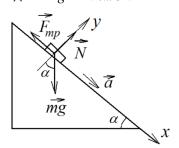

Пусть после переливания из первого сосуда во второй массы Δm в нём установится температура t_3 . Тогда $\Delta m \cdot c (t_1 - t_3) = m_2 c (t_3 - t_1)$.

После переливания такой же массы в 1 сосуд в нём устанавливается температура t4.

$$\Delta m \cdot c (t_3 - t_4) = (m_1 - \Delta m)c (t_4 - t_1).$$
 (2)

Решая эту систему уравнений и учитывая, что $m = \rho V$, получаем $t_4 = 75$ °C.

Ответ: 75⁰С

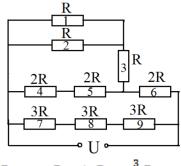

3. Небольшой диск массы m = 50 г соскальзывает поочередно с двух наклонных плоскостей, изображённых на рисунке за одинаковое время. Углы $\alpha = 45^{\circ}$, $\beta = 60^{\circ}$. Определить коэффициент трения скольжения, считая, что наклонные плоскости изготовлены из одинакового материала. Ускорение свободного падения $g = 10 \text{ м/c}^2$.

Решение

Запишем II закон Ньютона в проекциях на

OX: $mg \sin \alpha - F_{mp} = ma_1$ (1)

OY: $N = mg \cos \alpha$;



 $F_{mp} = \mu N = \mu mg \cos \alpha$ подставляем в (1) и находим ускорение $a_1 = g \sin \alpha - \mu g \cos \alpha$. (2)

Для второго клина соответственно получаем $a_2 = g \sin\beta - \mu g \cos\beta$. Путь, пройденный в первом случае $S_1 = \frac{L}{\cos\alpha} = \frac{a_1 t^2}{2}$, тогда ускорение $a_1 = \frac{2L}{\cos\alpha t^2}$, а во втором случае $a_2 = \frac{2L}{\cos^2 t^2}$

подставляем ускорения в (1) и (2) и делим эти выражения $\frac{\sin \alpha - \mu \cos \alpha}{\sin \beta - \mu \cos \beta} = \frac{\cos \beta}{\cos \alpha}$. Выражаем отсюда коэффициент трения $\mu = \frac{1}{2} \frac{(\sin 2\alpha - \sin 2\beta)}{(\cos^2 \alpha - \cos^2 \beta)} = \frac{0.866 - 1}{2(0.25 - 0.5)} = 0.27$

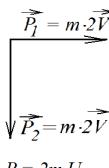
Ответ: 0,27

4. Определите общее сопротивление для приведённой схемы. Сопротивления резисторов указаны на схеме, $R = 266 \, O_{M}$. Для удобства решения резисторы пронумерованы.

Решение

Резисторы 1 и 2 соединены параллельно $R_{12} = \frac{R}{2}$; К ним последовательно подключен резистор т.е

$$R_{1-3} = R_{12} + R_3 = \frac{3}{2}R.$$


Резисторы 4 и 5 соединены последовательно $R_{45}=2R+2R=4R$ и они параллельны R_{1-3} . Тогда $R_{1-5}=\frac{R_{1-3}\cdot R_{45}}{R_{1-3}+R_{45}}=\frac{12}{11}$ R. $R_{1-6}=\frac{12}{11}R+2R=\frac{34}{11}R$.

Резисторы 7, 8, 9 соединены последовательно $R_{7-9} = 9R$ и они параллельны R_{1-6} .

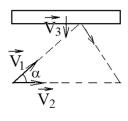
Тогда общее сопротивление $R_{\text{oб}} = \frac{R_{7-9} \cdot R_{1-6}}{R_{7-9} + R_{1-6}} = \frac{306}{133} R = \frac{306}{133} \cdot 266 = 612 \text{ Ом}$

Ответ: 306R/133 = 612 Om

5. Материальная точка массы m движется со скоростью 2V. Перпендикулярно ей движется материальная точка массы 2m со скоростью V. На них одновременно начинают действовать одинаковые по величине и направлению силы. Через некоторое время направление скорости первой точки становится перпендикулярным первоначальному, а величина скорости остаётся 2V. Определите величину и направление скорости второй точки в этот момент. Скорость $V = \sqrt{20} \,\mathrm{m/c}$. Ответ поясните рисунком.

Решение

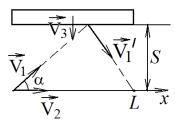
Для решения используем закон изменения импульса $\vec{F}\Delta t = \overrightarrow{P_2}$ - $\overrightarrow{P_1}$, где Δt — время действия силы, P — импульс. Тогда для первой точки в проекции на ось ОХ: $F_x \Delta t = 0 - m2V$, на ось ОУ: $F_v \Delta t = m2V - 0$.


У второй точки начальный импульс направлен перпендикулярно начальному импульсу первой, например, вниз по оси у.

На вторую точку действует та же сила, то есть проекции силы на ось одинаковы, тогда

$$F_x \Delta t = 2mU_x - 0 = -m2V$$
, т.е. $U_x = -V$.
 $F_y \Delta t = 2mU_y - 2mV = m2V$, т.е. $U_y = 2V$.
Конечный импульс и его проекции изображены на рисунке.

второй точки $U = \sqrt{U_x^2 + U_v^2}$ Модуль скорости


$$=V\sqrt{5} = \sqrt{20}\sqrt{5} = 10 \text{m/c}$$

1. По поверхности льда скользят без трения две одинаковые гайки, вылетевшие одновременно со скоростями V_1 и V_2 из одной точки. Угол между направлениями их движения $\alpha = 53^{\circ}$. Первая гайка, столкнувшись через время $t_1 = 5 \ c$ с массивным стальным бруском, меняет направление движения и спустя время $t_2 = l \ c$ сталкивается со второй. Определите скорость бруска V_3 , если скорость второй гайки V_2

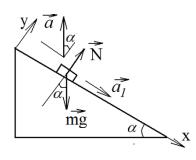
= 1.5 m/c.

Справка: $sin53^{\circ} = 0.8$; $cos53^{\circ} = 0.6$.

Решение

По оси X гайки проходят одинаковые пути за одинаковое время. Проекция первой на эту ось не меняется в результате удара, то есть $V_1cos\alpha = V_2$.

Пусть в момент удара расстояние между осью X и бруском равно S. Выразим это расстояние до удара $S = V_I sin\alpha t_I$. Перед ударом скорость первой гайки в системе отсчёта, связанной с


движущимся бруском будет равна ($V_1\sin\alpha + V_3$). Так как брусок массивный, то в результате упругого удара вертикальная составляющая скорости остаётся неизменной, а при переходе в неподвижную систему отсчёта будет равна $V_1' = V_1\sin\alpha + 2 V_3$.

Тогда обратный путь $S=(\ V_I sin \alpha + 2\ V_3)\ t_2$. Тогда $V_I sin \alpha\ t_I = (V_I sin \alpha + 2\ V_3)\ t_2$.

Выражаем отсюда скорость бруска
$$V_3 = \frac{V_1 sin\alpha(t_1 - t_2)}{2t_2} = \frac{V_2 sin\alpha(t_1 - t_2)}{2t_2 cos\alpha} = \frac{1,5 \cdot 0,8(5-1)}{2 \cdot 1 \cdot 0,6} = 4$$
м/с

Ответ: 4 м/с

2. В кабине вертолёта, поднимающегося вертикально вверх с ускорением $a=6\ m/c^2$, груз соскальзывает с гладкой наклонной поверхности за $t_I=2\ c$. За какое время будет спускаться этот груз с той же поверхности, если вертолёт зависнет в воздухе? Ускорение свободного падения $g=10\ m/c^2$.

Решение

Запишем второй закон Ньютона в проекции на ось X для первого случая: $mgsin\alpha = m(a_1 - asin \propto)$.

Выражаем $a_1 = (g + a)sin\alpha$.

Если вертолёт зависнет, то ускорение будет $a_2 = g \sin \alpha$. Так как поверхность одинаковая, то пути в этих случаях одинаковые $L = \frac{a_1 t_1^2}{2} = \frac{a_2 t_2^2}{2}$.

Тогда время во втором случае $t_2 = t_1 \sqrt{\frac{a_1}{a_2}} = t_1 \sqrt{\frac{a+g}{g}} =$

$$2\sqrt{\frac{10+6}{10}} = 2,53c$$

Ответ: 2,53 с

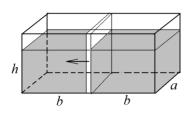
3. Необходимо нагреть оловянную деталь от комнатной температуры до температуры плавления. Напряжение, подаваемое на электропечь можно менять. Если напряжение равно 100В, то этот процесс занимает 2640 секунд, при напряжении 110В - 1680 с.

Сколько минут потребуется на нагрев, если подать напряжение 100В? Потери теплоты от печи в окружающее пространство пропорциональны времени.

Решение

Тепло, выделяемое нагревателем расходуется на нагревание олова до температуры плавления (Q_1) и потери в окружающее пространство. Запишем для трёх напряжений

$$\frac{U_1^2 t_1}{R} = Q_1 + a t_1; (1) \qquad \qquad \frac{U_2^2 t_2}{R} = Q_1 + a t_2; (2) \qquad \qquad \frac{U_3^2 t_3}{R} = Q_1 + a t_3; (3)$$


Находим разности (1) - (2) и (1) – (3)
$$\frac{U_1^2 t_1 - U_2^2 t_2}{R} = a(t_1 - t_2); \tag{4}$$

$$\frac{U_1^2 t_1 - U_3^2 t_3}{R} = a(t_1 - t_3); \tag{5}$$

Поделив (4) на (5) получаем $\frac{U_1^2 t_1 - U_2^2 t_2}{U_1^2 t_1 - U_3^2 t_3} = \frac{(t_1 - t_2)}{(t_1 - t_3)}$.

Решая это уравнение, находим t_3 =1200 c=20 мин

Ответ: 20 мин (1200 с)

4. В ёмкость с вертикальными стенками прямоугольным основанием налита вода до высоты h=0,8 м. Длина ёмкости 2b=2 м, ширина a=0,6 м. В центр этой ёмкости помещают плотно прилегающую ко дну и боковым стенкам перегородку, а затем смещают её влево на расстояние равное a. Определить силу давления на перегородку, которое оказывает

вода, находящаяся справа от неё. Плотность воды $\rho = 1000\,{\rm K}^{\rm \Gamma}/_{\rm M}^3$, ускорение свободного падения $g = 10 \text{ м/c}^2$.

Решение

При перемещении перегородки объём воды в части не изменяется, следовательно $h \ b \ a = h_l \ a \ (b + a)$ и высота воды станет $h_1 = \frac{hb}{b+a} = \frac{0.8 \cdot 1}{1+0.6} = 0.5$ м.

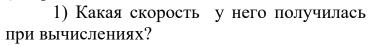
Давление на боковую стенку станет $P = \frac{1}{2} \rho g h_1$. Сила давления $F = PS = \frac{\rho g h_1 \cdot h_1 a}{2} = \frac{\rho g a h_1^2}{2}$ $=\frac{10^{3}10\cdot0,6\cdot0,25}{2}=0,75\cdot10^{3}H=750H.$

Ответ: 750Н

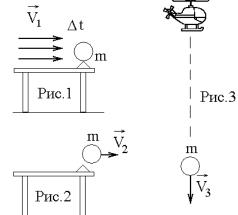
5. Две бусины массы m и 2m скользят без трения навстречу друг другу по тонкому горизонтальной расположенному кольцу, В Центростремительное ускорение первой бусины $a_1 = 9_M/c^2$, второй - $a_2 = 36_M/c^2$. Найдите: а) их центростремительное ускорение после неупругого столкновения; б) радиус кольца, если четверть кольца они прошли за время $t = 1,05 \ c$ после столкновения.

Из закона сохранения импульса: $2mV_2 - mV_1 = 3mV$. (1)

Центростремительное ускорение $a = \frac{v^2}{R}$, тогда скорость $V = \sqrt{aR}$, где R - радиус кольца.


Подставляя в (1), получаем $2\sqrt{a_2R} - \sqrt{a_1R} = 3\sqrt{aR}$.

Отсюда получаем ускорение $a = \left(\frac{2\sqrt{a_2} - \sqrt{a_1}}{2}\right)^2 = 9 \text{м/c}^2$.


Время $t = \frac{2\pi R}{4V} = \frac{\pi R}{2\sqrt{aR}} = \frac{\pi\sqrt{R}}{2\sqrt{a}}$, следовательно, радиус кольца $R = \left(\frac{2t}{\pi}\right)^2 a = 4$ м Ответ: 9 м/с², 4 м

11 класс

- 1. Маленький шарик массы m=100 г установлен его на подставке. Порыв ветра, длительностью $\Delta t=0,2$ с (см. рис. 1) сдул шарик с подставки. Скорость ветра при этом была горизонтально направлена и равна $\nu_1=50$ м/с. Ветер
- сообщил шарику скорость $v_2 = 0,5$ м/с (см. рис. 2). Оцените максимальную скорость v_3 , до которой смог бы разогнаться этот шарик, сброшенный с большой высоты с вертолета (см. рис. 3).

2) До какой скорости разогнался бы другой шарик с увеличенным в 2 раза радиусом из того же материала?

Примечание: при маленьких скоростях — — — тел сопротивлением воздуха обычно пренебрегают, но при очень больших скоростях возникает большая сила сопротивления воздуха, модуль которой пропорционален квадрату скорости воздуха относительно тела и площади поперечного сечения тела: $F_{\text{сорп}} = S_{\text{сеч}} \cdot v_{omn}^2$.

Решение

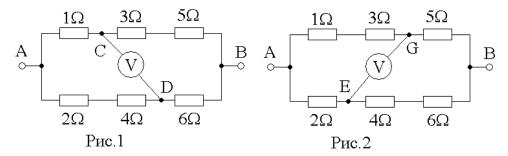
1) Импульс силы ветра придает импульс шарику $F_{conp_1} \Delta t = m V_2$.

При падении с вертолета сила сопротивления воздуха будет компенсировать силу тяжести шарика:

$$F_{conp2} = mg$$

Поделим эти уравнения друг на друга

$$\frac{F_{conp1}\Delta t}{F_{conp2}} = \frac{mV_2}{mg} \qquad \Rightarrow \frac{V_1^2}{V_3^2} = \frac{V_2}{g\Delta t} \quad \Rightarrow V_3 = V_1 \sqrt{\frac{g\Delta t}{V_2}} = 50\sqrt{\frac{10 \cdot 0, 2}{0, 5}} = 100 \text{ m/c}.$$


2) Анализируем формулу объема шара $V = \frac{4}{3}\pi R^3$, где R — радиус шара. Если радиус шарика увеличить в 2 раза, то его масса (объем) увеличится в 8 раз. Значит, чтобы скомпенсировать теперь его силу тяжести, надо увеличить силу сопротивления в 8 раз. Площадь сечения увеличится в 4 раза, квадрат скорости должен увеличиться при этом еще в 2 раза. Значит, сама скорость возрастет в $\sqrt{2}$ раз и станет равной 141 м/с.

Ответ: 1) 100 м/с; 2) 141 м/с.

2. На рисунке изображена часть цепи, расположенной между двух клемм A и B, при этом потенциал точки A больше потенциала точки B. Верхняя часть цепи состоит из последовательно соединенных резисторов с сопротивлениями 1 Ом, 3 Ом и 5 Ом, а нижняя часть из последовательно соединенных резисторов с сопротивлениями 2 Ом, 4 Ом и 6 Ом. Если идеальный вольтметр подключают так, как показано на рис. 1, то его показания оказываются равными $U_1 = 35 \text{ B}$.

Примечание: известно, что для измерения постоянного напряжения вольтметром, одним проводом соединяют клемму "+" на вольтметре и точку на схеме с большим потенциалом, а вторым проводом соединяют клемму "—" на вольтметре и точку на схеме с меньшим потенциалом.

- 1) Укажите, в какой точке подсоединения вольтметра на рис. 1 будет больший потенциал?
- 2) Какими будут показания вольтметра, если его подключить так, как показано на рис. 2? В какой точке в этом случае будет потенциал больше?

Решение

По верхней цепи течет ток $I_1 = \frac{U_{AB}}{1+3+5} = \frac{U_{AB}}{9}$, по нижней цепи $I_2 = \frac{U_{AB}}{2+4+6} = \frac{U_{AB}}{12}$

Отношение токов $\frac{I_1}{I_2} = \frac{12}{9} = \frac{4}{3}$

- 1) Показания $U_1 = \varphi_C \varphi_D = (\varphi_A \varphi_D) (\varphi_A \varphi_C) = I_2 \cdot (2+4) I_1 \cdot 1 = \frac{3}{4}I_1 \cdot 6 I_1 = 3,5I_1 > 0$, это значит, что $\varphi_C > \varphi_D$, то есть в точке C потенциал будет бо́льшим.
- 2) Показания $U_2 = \varphi_G \varphi_E = (\varphi_A \varphi_E) (\varphi_A \varphi_G) = I_2 \cdot 2 I_1 \cdot (1+3) = \frac{3}{4}I_1 \cdot 2 4I_1 = -2, 5I_1 < 0$. Отсюда следует, что $\varphi_E > \varphi_G$.

Сравнивая величины показаний в двух случаях, приходим к выводу, что $\left|\frac{U_2}{U_1}\right| = \frac{2.5}{3.5} = \frac{5}{7} \implies \left|U_2\right| = \frac{5}{7}U_1 = \frac{5}{7} \cdot 35 = 25 \text{ B}$

Ответ: 1) потенциал больше в точке C; 2) $U_2 = 25~\mathrm{B}$, потенциал больше в точке E.

(111111)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
· He ·	вакуум 🛚
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Hamman	$ \mathbf{m} $
N	
Ar.	
1/1/1/1/	VIIIII

3. Горизонтальный цилиндрический теплоизолированный сосуд с гладкими стенками разделен на две части подвижным поршнем некоторой массы m, который сделан из пористого материала. Поршень соединен горизонтальной идеальной пружиной с левой стенкой сосуда, перпендикулярно

плоскости поршня. В левой части цилиндра вначале находилась смесь благородных газов — гелия и аргона — в количестве v_1 =0,2 моль и v_2 =0,8 моль соответственно при температуре t=107 °C, а в правой части был вакуум. Оказалось, что через мелкие поры поршня могут проходить только маленькие молекулы гелия, но не аргона. На сколько изменилась температура смеси (в °К) к моменту достижения нового положения равновесия поршня? Длиной ненапряженной пружины пренебречь. Универсальная газовая постоянная R=8,31 Дж/моль·К. Газы считать идеальными. Ответ округлить с точностью до целых.

Решение

Напишем условие равновесия поршня: $kh_1 = P_1S$, где S — площадь его сечения, h_1 — длина левой части сосуда и одновременно удлинение пружины, так как начальной длиной пружины пренебрегаем.

Из этого уравнения и из уравнения состояния идеального газа $P_1Sh_1 = (v_1 + v_2)RT_1$ следует, что

$$kh_1^2 = (v_1 + v_2)RT_1 \tag{1}$$

Для гелия поршень не является препятствием, поэтому он распространится на весь объем сосуда равномерно, а аргон останется в левой части. Парциальное давление гелия будет одинаковым в разных частях сосуда, потому что его концентрация и температура будут одинаковы, а P = nkT. Поэтому гелий действует на поршень с двух сторон с одинаковыми силами и их действие компенсируется.

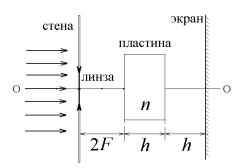
В новом положении равновесия $kh_2=P_2$ 'S , где P_2 ' — парциальное давление неона, h_2 новая длина левой части сосуда. Из этого уравнения и из уравнения состояния идеального газа P_2 ' $Sh_2=v_2RT_2$ следует, что

$$kh_2^2 = v_2 RT_2$$
. (2)

Так как сосуд теплоизолирован, то можно применить закон сохранения энергии для системы "смесь газов - поршень" с учетом того, что благородные газы одноатомны

$$\frac{3}{2}(v_1 + v_2)RT_1 + \frac{kh_1^2}{2} = \frac{3}{2}(v_1 + v_2)RT_2 + \frac{kh_2^2}{2}$$
 (3)

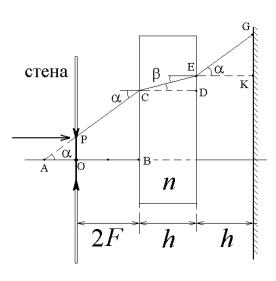
подставим уравнения (1) и (2) в (3)


$$\frac{3}{2}(v_1+v_2)RT_1+\frac{(v_1+v_2)RT_1}{2}=\frac{3}{2}(v_1+v_2)RT_2+\frac{v_2RT_2}{2},$$

откуда получим температуру T_2

$$T_2 = \frac{4(v_1 + v_2)T_1}{(3v_1 + 4v_2)} = \frac{4 \cdot 1 \cdot 380}{(3 \cdot 0, 2 + 4 \cdot 0, 8)} = 400 \text{ K}$$

Температура изменилась на $\Delta T = T_2 - T_1 = 400 - 380 = 20$ К


Ответ: 20 К

4. В непрозрачной стене сделано маленькое круглое отверстие диаметром d=6 см, в которое вставлена рассеивающая линза такого же диаметра с оптической силой $D=-\frac{1}{3}$ дптр. За линзой на двойном фокусном расстоянии расположена стеклянная плоскопараллельная

пластина с показателем преломления n=1,5 и толщиной h=120 см, а за ней на расстоянии h расположен экран. И пластина и экран параллельны стене и плоскости линзы. Линзу освещают параллельным главной оптической оси широким пучком света. Найти радиус светлого пятна на экране. При малых углах принять $\lg \alpha \approx \sin \alpha$.

Решение

Фокусное расстояние линзы равно $F = \frac{1}{D} = -3$ м.

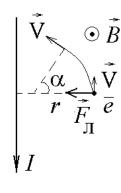
Параллельный пучок света, пройдя через рассеивающую линзу параллельно главной оптической оси, далее рассеивается так, как будто лучи выходят из мнимого фокуса слева от линзы из точки A, т.е. OA = |F| = 3

Таким образом, AB = OA + 2|F| = 9 м.

Из рисунка найдем $tg\,\alpha = \frac{OP}{OA} = \frac{d/2}{|F|} = \frac{0.03}{3} = 0.01.$

Из закона преломления найдем $tg \beta \approx \sin \beta = \frac{\sin \alpha}{n} \approx \frac{tg \alpha}{n} = \frac{0.01}{1.5}$

Радиус пятна на экране


$$R = BC + DE + KG = AB \cdot \lg \alpha + h \cdot \lg \beta + h \cdot \lg \alpha = 10 \cdot 0,01 + 1,2 \cdot \frac{0,01}{1,5} + 1,2 \cdot 0,01 = 0,11 \text{ m}.$$

Ответ: 0,11 м

5. На расстоянии r=3 м от бесконечного прямого провода параллельно нему движется электрон со скоростью V=2,15 м/с. На очень короткое время $\Delta t=$

62,5 мкс по проводу пропускают импульс постоянного тока I=26,8 A в направлении, противоположном движению электрона. На каком расстоянии от провода окажется электрон через 1 с после окончания импульса тока? 3амечание: бесконечный прямой провод с током создает на расстоянии r от себя индукцию магнитного поля $B = \frac{\mu_0 I}{2\pi r}$, где $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м — магнитная постоянная, Принять $\pi = 3,14$, масса электрона $m = 9,1 \cdot 10^{-31}$ кг, заряд электрона $e = 1, 6 \cdot 10^{-19}$ Кл

Решение

Найдем индукцию магнитного поля провода на расстоянии r:

 $B = \frac{4\pi \cdot 10^{-7} \cdot 26,8}{2\pi \cdot 3} = 1,787 \cdot 10^{-6} \, \text{Тл.}$ По правилу правого винта найдем направление индукции: перпендикулярно плоскости рисунка к нам. По правилу левой руки определяем направление силы Лоренца на отрицательную частицу: влево по рисунку. Электрон будет двигаться по дуге окружности

радиусом
$$R = \frac{mV}{qB} = \frac{9.1 \cdot 10^{-31} \cdot 2.15}{1.6 \cdot 10^{-19} \cdot 1.787 \cdot 10^{-6}} = 0,686 \cdot 10^{-5}$$
 (м) будет находиться на одном месте). Период

(практически будет Период $T = \frac{2\pi R}{V} = \frac{2\pi \cdot m}{qB} = \frac{2 \cdot 3,14 \cdot 9,1 \cdot 10^{-31}}{1,6 \cdot 10^{-19} \cdot 1,787 \cdot 10^{-6}} = 2 \cdot 10^{-5} \text{ (c)} = 20 \text{ MKC}$

За 62,5 мкс электрон сделает три оборота и еще одну восьмую оборота, при этом скорость электрона отклонится на 45° от вертикали. Перпендикулярная составляющая скорости электрона будет $V_r = V \cdot \cos 45^\circ = \frac{V}{\sqrt{2}} = \frac{2,15}{1,41} = 1,5 \text{ m/c}.$

За 1 с электрон станет ближе к проводу на $V_r \cdot t = 1,5 \cdot 1 = 1,5$ м.

Ответ: 1,5 м